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ABSTRACT 

We study some properties of the numerical radius of matrices with non-negative 

entries, and explicit ways to compute it. We also characterize positive matrices with 

equal spectral and numerical radii, i.e., positive spectra2 matrices. 

Let A be an n X n complex matrix with numerical radius 

r(A)= ;zl tbx)l. 

Here (x, y) is the unitary inner product and,Ixl = (x, x)l/‘. We shall study r(A) 
for positive matrices, i.e., for matrices with non-negative entries, which we 
denote by A > 0. 

LEMMA 1. If A > 0, then 

r(A)= pg {@x,x)> x-“}. (1) 

Proof, There exists a unit vector x,,= ([r,. . . ,&Jf such that r(A) 
= I(Ax,,,r,)l. Since A > 0, and yO= (ItI/,. . . , I.&l)” has norm 1, we have 

r(A) G I(Ax,~a)l <(AYcPY,) Q r(A), (2) 

and the lemma follows. n 
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Using the notation 

ReA = +(A + A ‘), 

we prove the following theorem. 

THEOREM 1. If A > 0, then 

r(A) = r(ReA). 

Proof. 

On the other hand, if ya E R” is the positive vector of Lemma 1, then 

r(ReA)=maxJRe(Ax,r)I >/(Ay,,y,)=r(A), 

and the proof is complete. 

(3) 

(4) 

(5) 

(6) 

n 

Since ReA is symmetric, p(ReA) = r(ReA), where o denotes the spectral 
radius. Therefore, Theorem 1 states that if A > 0, then 

r(A) =p(ReA). (7) 

In general, p(A) < r(A). A matrix for which p(A) = r(A) we call spectral. 

This definition and (7) yield the next result. 

COROLLARY 1. Zf A > 0, then A is spectral if and only if 

P(A) =p(ReA). 

Another simple result is the following. 

(8) 

COROLLARY 2. lf A > 0 is spectral, then 

p(Ak)=p(ReAk), k=1,2,3 ,.... (9) 

Proof Clearly A’ > 0, and in Theorem 2 of [l] we proved that A k is 
spectral if A is. Corollary 1 completes the proof. n 

In [l] we studied the problem whether, in general, an equality of the form 
r(A”)=P(A) f or some integer m implies the spectrality of A. Theorem 3 of 
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[l] shows that if A is an n-square matrix with minimal polynomial of degree 
p, and m is some integer with m > p, then A is spectral if and only if 
r(A”) = r”‘(A). Since generally it is not true that p < n, we raised the 
question whether, in general, an equality of the form r(Am) = rm(A) for 
some m < n implies spectrality. An example for n = 3, given in [ 11, excluded 
this possibility even for the case m = n - 1=2. Now we are able to answer 
the above question in the negative for m= n- 1, for any order n. Before 
introducing our example we need the following results. 

THEOREM 2. lf A > 0, then r(A) = s if and only if the matrix 

S=sZ-ReA 

is positive semi-definite but not positive definite. 

(10) 

Proof. By Lemma 1, s = r(A) if and only if s(x, x) > (Ax, X) for every 
x E R”, with equality holding for some x,#O. Clearly for all x E R”, (Ax, X) 
= (ReAx, x). Therefore s = r(A) if and only if (Sx, X) > 0 for all x E R”, with 
(SX,, x,,) = 0, where S is the matrix in (10). This completes the proof. n 

A consequence of Theorem 2 is the following. 

COROLLARY 3. ZfA>Oandif 

D = diag(h,, . . . , A,) (11) 

is congruent to the matrix S in (lo), then r(A) = s if and only if all the hi’s 
are non-negative and at least one of them vanishes. 

Proof. By Theorem 2, r(A) = s if and only if the eigenvalues of the 
symmetric matrix S are non-negative and at least one of them vanishes. By 
Sylvester’s law of inertia the corollary follows. W 

We are ready now for the above mentioned example. 

EXAMPLE. For each n> 1 there exists an n x n matrix which is not 
spectral but satisfies r”-‘(A) = r(A”-‘). 

P&of. For n = 2 there is nothing to prove. For n > 3 consider the n x n 
matrix 

A=diag(O,fi ,l,l,..., l,V’2)E, where Eij = Si _ 1 i. (12) 
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Clearly, T(A) > 0 = p(A), i.e., A is not spectral. To see that rnpl(A) 
= r(A”- ‘), note first that Ane1=2Ene1, so that r(A”-l) = 1. All that 
remains is to show that r(A) = 1. In order to do so we consider the matrix 
S = Z - ReA and operate on its rows and columns by elementary operations, 
to eliminate its off-diagonal elements S,,,, s, i, s,s, s s s s,s, . . . ,S,_ l,n, S,,,_ 1, in 
that order. We find that S is congruent to the diagonal matrix 

D=diag(l,4,; ,..., i,O), (13) 

and by Corollary 3 the example is established. n 

We continue by proving a simple mapping rule for the numerical radius 
of positive matrices. 

THEOREM 3. Zf A is a positive spectral matrix and P(z) =Eiaizi is a 
polynomial with non-negative coefficients, then 

+‘(A)) = P(W). (14 

Proof. For any matrix C and scalar y, r(yC)= ]y]r(C). We also have the 
Berger-Halmos inequality ([2], p. 176), 

r( 0) < ri( C), i= 1,2,3 ).... (15) 

Therefore, by the sub-additivity of the numerical radius it follows that 

Note that (16) is valid even if A is not positive. Now, by the Perron- 
Frobenius theorem, the positive matrix A has a positive eigenvalue A with 
h=p(A). Thus, if hi, 1 < i < n, are the eigenvalues of A, then the eigenvalues 
P(Xi) of P(A) satisfy 

IP(X IC a/‘/l ’ P(I&I) ’ P(‘)=P(p(A)), 
i 

(17) 

with equality for Xi = h. Therefore 

@(A)) = Z%(A))* (16) 

By the spectrality of A, by (17), and since in general p( *) < T( .), we finally 
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obtain 

P@(A)) = x o/(~)= I: +(A) = P(p(A)) =p(P(A)) G @(A)). (19) 
i i 

The inequalities (16) and (19) complete the proof. n 

We are able now to generalize the characterization of spectral matrices 
given in Theorem 3 of [l], in the case of positive matrices. 

THEOREM 4. Let A be a positive matrix with minimal polynomial of 
degree p, and let 

P,(z)= 2 CxjZ’ 
j=O 

(20) 

be any polynomial of degree m > p with non-negative coefficients. Then A is 
spectral if and only if 

Pnl (r(A)) = r(P, (A)). (21) 

Proof. If A is spectral, then (21) holds by Theorem 3. Conversely, 
assume that (21) holds. By the Halmos inequality in (15) we have 

r(P,(A))= r( 2 aiAi) < z cwir(Ai) < x+(A) 
i i i 

= Pm (r(A)) = +‘v, (A)). (22) 

Hence, we have equalities in (22) and consequently 

jzOaj[ri(A) - r(Ai)] =O. (23) 

Each summand in (23) is non-negative, and therefore must vanish. In 
particular, since cx,,, > 0, we obtain 

r(A”‘) = r”(A), (24 

where by assumption m > p. By Theorem 3 of [l] this is a necessary and 
sufficient condition for the spectrality of A, and the theorem follows. n 

Since the degree p of the minimal polynomial of an n x n matrix A 
satisfies p < n, we have the following immediate consequence of Theorem 4. 
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COROLLARY 4. Let A be a positive n-square matrix, and let P,,(z) be 
some polynomial of degree n with non-negative coefficients. Then A is 
spectral if and only if 

pn (r(A)) = cl(A)). 
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