Numerical Radius of Positive Matrices
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ABSTRACT

We study some properties of the numerical radius of matrices with non-negative
entries, and explicit ways to compute it. We also characterize positive matrices with
equal spectral and numerical radii, i.e., positive spectral matrices.

Let A be an n X n complex matrix with numerical radius

r(4)= max [(Ax.x).

Here (x,y) is the unitary inner product and,|x|= (x,x)"/% We shall study r(A)
for positive matrices, i.e., for matrices with non-negative entries, which we
denote by A > 0.

LemMa 1. If A>0, then

r(A)= Inl]a’§ {(Ax,x), xER"}. (1)
=
Proof. There exists a unit vector x,=({;,...,£,)" such that r(A)
= |(Axg, %y)|- Since A >0, and y,=(|¢,],....|£,])’ has norm 1, we have
r{A) < [(Axg, %) <(Ayo, yo) < 7(A), (2)
and the lemma follows. |
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Using the notation
ReA=}(A+A"), (3)

we prove the following theorem.

Taeorem 1. If A >0, then

r(A)=r(ReA). (4)
Proof.
r(ReA)= max |(ReAx,x)| = 'rgilgxlﬂ(Ax, x)+ (Ax,x) |
= max |Re(Ax, x)| < max [(Ax,x)|=r(A). (5)

On the other hand, if y,€R" is the positive vector of Lemma 1, then
7(Re A) =max{Re(Ax, )| > (Ayo yo) = 1(A), Q

and the proof is complete. [ |

Since Re A is symmetric, p(ReA)=r(ReA), where p denotes the spectral
radius. Therefore, Theorem 1 states that if A >0, then

r(A)=p(ReA). (7)
In general, p(A) < r(A). A matrix for which p(A)=r(A) we call spectral.
This definition and (7) yield the next result.
CoroLLARY 1. If A >0, then A is spectral if and only if
o(A) =p(ReA). )

Another simple result is the following,

CororLary 2. If A >0 is spectral, then

p(A¥)=p(ReA%), k=1,23,.... (9)

Proof. Clearly A*>0, and in Theorem 2 of [1] we proved that A* is
spectral if A is. Corollary 1 completes the proof. [ |

In [1] we studied the problem whether, in general, an equality of the form
r(A™)=r™(A) for some integer m implies the spectrality of A. Theorem 3 of
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[1] shows that if A is an n-square matrix with minimal polynomial of degree
p, and m is some integer with m > p, then A is spectral if and only if
r(A™)=r™(A). Since generally it is not true that p<n, we raised the
question whether, in general, an equality of the form r(A™)=r"(A) for
some m < n implies spectrality. An example for n=3, given in [1], excluded
this possibility even for the case m=n—1=2. Now we are able to answer
the above question in the negative for m=n—1, for any order n. Before
introducing our example we need the following results.

Tueorem 2. If A >0, then r(A)=s if and only if the matrix
S=sI—ReA (10)
is positive semi-definite but not positive definite.
Proof. By Lemma 1, s=r(A) if and only if s(x,x)> (Ax,x) for every
x €R", with equality holding for some x,70. Clearly for all x €R", (Ax,x)

=(ReAx,x). Therefore s=r(A) if and only if (Sx,x) >0 for all x€R", with
(Sx4,%5) =0, where § is the matrix in (10). This completes the proof. [ |

A consequence of Theorem 2 is the following.

CoroLLary 3. If A >0 and if
D=diag(A,,...,A,) (11)

is congruent to the matrix S in (10), then r(A)=s if and only if all the \'s
are non-negative and at least one of them vanishes.

Proof. By Theorem 2, r(A)=s if and only if the eigenvalues of the
symmetric matrix S are non-negative and at least one of them vanishes. By
Sylvester’s law of inertia the corollary follows. [ |

We are ready now for the above mentioned example.

ExamMpLE. For each n>1 there exists an nXn matrix which is not
spectral but satisfies r" " Y(A)=r(A"").

Proof. For n=2 there is nothing to prove. For n >3 consider the nxXn
matrix

A=diag(0,V2 ,1,1,...,1,V2)E,  where E,=§,_, (12)

N
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Clearly, r(A)>0=p(A), ie, A is not spectral. To see that r"~'(A)
=r(A""1), note first that A"~ '=2E""! 5o that r(A""Y=1. All that
remains is to show that r(A)=1. In order to do so we consider the matrix
S=1I1—-ReA and operate on its rows and columns by elementary operations,
to eliminate its off-diagonal elements S, ;,S; .S, 5,S54.. .-, .S, in

'n L,as¥an—1s

that order. We find that § is congruent to the dlagonal matrix
D=diag(1,4.%.....4,0), (13)

and by Corollary 3 the example is established. [ ]

We continue by proving a simple mapping rule for the numerical radius
of positive matrices.

Tueorem 3. If A is a positive spectral matrix and P(z)=Z ;2" is a
polynomial with non-negative coefficients, then

r(P(A))=P(r(A)). (14)

Proof. For any matrix C and scalar v, r(yC)=|v|r(C). We also have the
Berger-Halmos inequality ([2], p. 176),

r(C)<ri(C), j=123,.... (15)

Therefore, by the sub-additivity of the numerical radius it follows that

r(P(A))= r( ) a,.Af) <Sar(a)<Sar(4)=P(r(a).  (16)
7 7 1

Note that (16) is valid even if A is not positive. Now, by the Perron-
Frobenius theorem, the positive matrix A has a positive eigenvalue A with
A=p(A). Thus, if A,, 1 < i< n, are the eigenvalues of A, then the eigenvalues
P(A;) of P(A) satisfy

A= |2aw| (M) < P(N) = P(o(A)), (17)

with equality for A;=A. Therefore
p(P(A))=P(p(A)). (18)

By the spectrality of A, by (17), and since in general p(-) < r(-), we finally
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We are able now to generalize the characterization of spectral matrices
given in Theorem 3 of [1], in the case of positive matrices.

THEOREM 4. Let A be a positive matrix with minimal polynomial of
degree p, and let

P(2)= 3 ag (20)
i=0

be any polynomial of degree m > p with non-negative coefficients. Then A is
spectral if and only if

P, (r(A))=1(P,.(A)) (21)

Proof. 1If A is spectral, then (21) holds by Theorem 3. Conversely,
assume that (21) holds. By the Halmos inequality in (15) we have

r(P,(A))= r( > a,.Af) <D ar(A) <Y ari(A)
i f i
=B, (r(A))=r(P,(A)). (22)
Hence, we have equalities in (22) and consequently

o[r(A)~r(AT)]=0. (23)

s

i

Each summand in (23) is non-negative, and therefore must vanish. In
particular, since «,, >0, we obtain

r(A™)=r"(A), (24)

where by assumption m>p. By Theorem 3 of [1] this is a necessary and
sufficient condition for the spectrality of A, and the theorem follows. [ ]

Since the degree p of the minimal polynomial of an nXn matrix A
satisfies p < n, we have the following immediate consequence of Theorem 4.
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CoroLLaRY 4. Let A be a positive n-square matrix, and let P, (z) be
some polynomial of degree n with non-negative coeffzczents Then A is
spectral if and only if

E,(r(A))=1(P,(A)). (25)
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