Numerical Radius of Positive Matrices

Moshe Goldberg Department of Mathematics University of California, Los Angeles, California

and

Eitan Tadmor and Gideon Zwas Department of Mathematical Sciences Tel-Aviv University, Tel Aviv, Israel

Submitted by Marvin Marcus

ABSTRACT

We study some properties of the numerical radius of matrices with non-negative entries, and explicit ways to compute it. We also characterize positive matrices with equal spectral and numerical radii, i.e., positive *spectral* matrices.

Let A be an $n \times n$ complex matrix with numerical radius

$$r(A) = \max_{|x|=1} |(Ax, x)|.$$

Here (x, y) is the unitary inner product and $|x| = (x, x)^{1/2}$. We shall study r(A) for positive matrices, i.e., for matrices with non-negative entries, which we denote by $A \ge 0$.

LEMMA 1. If $A \ge 0$, then

$$r(A) = \max_{|x|=1} \{ (Ax, x), x \in \mathbf{R}^n \}.$$
 (1)

Proof. There exists a unit vector $x_0 = (\xi_1, \ldots, \xi_n)^t$ such that $r(A) = |(Ax_0, x_0)|$. Since $A \ge 0$, and $y_0 \equiv (|\xi_1|, \ldots, |\xi_n|)^t$ has norm 1, we have

$$r(A) \le |(Ax_0, x_0)| \le (Ay_0, y_0) \le r(A),$$
(2)

and the lemma follows.

LINEAR ALGEBRA AND ITS APPLICATIONS 12, 209–214 (1975)

© American Elsevier Publishing Company, Inc., 1975

209

Using the notation

$$\operatorname{Re} A = \frac{1}{2} (A + A^{t}), \tag{3}$$

we prove the following theorem.

THEOREM 1. If $A \ge 0$, then

$$r(A) = r(\operatorname{Re} A). \tag{4}$$

Proof.

$$r(\operatorname{Re} A) = \max_{|x|=1} |(\operatorname{Re} Ax, x)| = \max_{|x|=1} \frac{1}{2} |(Ax, x) + \overline{(Ax, x)}|$$

=
$$\max_{|x|=1} |\operatorname{Re}(Ax, x)| \leq \max_{|x|=1} |(Ax, x)| = r(A).$$
(5)

On the other hand, if $y_0 \in \mathbf{R}^n$ is the positive vector of Lemma 1, then

$$r(\operatorname{Re} A) = \max |\operatorname{Re}(Ax, x)| \ge (Ay_0, y_0) = r(A), \tag{6}$$

and the proof is complete.

Since ReA is symmetric, $\rho(\text{ReA}) = r(\text{ReA})$, where ρ denotes the spectral radius. Therefore, Theorem 1 states that if $A \ge 0$, then

$$r(A) = \rho(\text{Re}A). \tag{7}$$

In general, $\rho(A) \le r(A)$. A matrix for which $\rho(A) = r(A)$ we call spectral. This definition and (7) yield the next result.

COROLLARY 1. If $A \ge 0$, then A is spectral if and only if

$$\rho(A) = \rho(\text{Re}A). \tag{8}$$

Another simple result is the following.

COROLLARY 2. If $A \ge 0$ is spectral, then

$$\rho(A^k) = \rho(\text{Re}A^k), \qquad k = 1, 2, 3, \dots$$
(9)

Proof. Clearly $A^k \ge 0$, and in Theorem 2 of [1] we proved that A^k is spectral if A is. Corollary 1 completes the proof.

In [1] we studied the problem whether, in general, an equality of the form $r(A^m) = r^m(A)$ for some integer m implies the spectrality of A. Theorem 3 of

[1] shows that if A is an n-square matrix with minimal polynomial of degree p, and m is some integer with $m \ge p$, then A is spectral if and only if $r(A^m) = r^m(A)$. Since generally it is not true that p < n, we raised the question whether, in general, an equality of the form $r(A^m) = r^m(A)$ for some m < n implies spectrality. An example for n = 3, given in [1], excluded this possibility even for the case m = n - 1 = 2. Now we are able to answer the above question in the negative for m = n - 1, for any order n. Before introducing our example we need the following results.

THEOREM 2. If $A \ge 0$, then r(A) = s if and only if the matrix

$$\mathbf{S} = sI - \operatorname{Re}A \tag{10}$$

is positive semi-definite but not positive definite.

Proof. By Lemma 1, s = r(A) if and only if $s(x,x) \ge (Ax,x)$ for every $x \in \mathbb{R}^n$, with equality holding for some $x_0 \ne 0$. Clearly for all $x \in \mathbb{R}^n$, $(Ax,x) = (\operatorname{Re}Ax, x)$. Therefore s = r(A) if and only if $(Sx, x) \ge 0$ for all $x \in \mathbb{R}^n$, with $(Sx_0, x_0) = 0$, where S is the matrix in (10). This completes the proof.

A consequence of Theorem 2 is the following.

COROLLARY 3. If $A \ge 0$ and if

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \tag{11}$$

is congruent to the matrix S in (10), then r(A) = s if and only if all the λ_i 's are non-negative and at least one of them vanishes.

Proof. By Theorem 2, r(A) = s if and only if the eigenvalues of the symmetric matrix S are non-negative and at least one of them vanishes. By Sylvester's law of inertia the corollary follows.

We are ready now for the above mentioned example.

EXAMPLE. For each n > 1 there exists an $n \times n$ matrix which is not spectral but satisfies $r^{n-1}(A) = r(A^{n-1})$.

Proof. For n=2 there is nothing to prove. For $n \ge 3$ consider the $n \times n$ matrix

$$A = \text{diag}(0, \sqrt{2}, 1, 1, \dots, 1, \sqrt{2})E, \quad \text{where } E_{ij} = \delta_{i-1,j}.$$
(12)

Clearly, $r(A) > 0 = \rho(A)$, i.e., A is not spectral. To see that $r^{n-1}(A) = r(A^{n-1})$, note first that $A^{n-1} = 2E^{n-1}$, so that $r(A^{n-1}) = 1$. All that remains is to show that r(A) = 1. In order to do so we consider the matrix S = I - ReA and operate on its rows and columns by elementary operations, to eliminate its off-diagonal elements $S_{1,2}, S_{2,1}, S_{2,3}, S_{3,2}, \dots, S_{n-1,n}, S_{n,n-1}$, in that order. We find that S is congruent to the diagonal matrix

$$D = \operatorname{diag}(1, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, 0), \tag{13}$$

and by Corollary 3 the example is established.

We continue by proving a simple mapping rule for the numerical radius of positive matrices.

THEOREM 3. If A is a positive spectral matrix and $P(z) = \sum_{j} \alpha_{j} z^{\dagger}$ is a polynomial with non-negative coefficients, then

$$r(P(A)) = P(r(A)). \tag{14}$$

Proof. For any matrix C and scalar γ , $r(\gamma C) = |\gamma|r(C)$. We also have the Berger-Halmos inequality ([2], p. 176),

$$r(C^{i}) \leq r^{i}(C), \qquad j = 1, 2, 3, \dots$$
 (15)

Therefore, by the sub-additivity of the numerical radius it follows that

$$r(P(A)) = r\left(\sum_{j} \alpha_{j} A^{j}\right) \leq \sum_{j} \alpha_{j} r(A^{j}) \leq \sum_{j} \alpha_{j} r^{j}(A) = P(r(A)).$$
(16)

Note that (16) is valid even if A is not positive. Now, by the Perron-Frobenius theorem, the positive matrix A has a positive eigenvalue λ with $\lambda = \rho(A)$. Thus, if λ_i , $1 \le i \le n$, are the eigenvalues of A, then the eigenvalues $P(\lambda_i)$ of P(A) satisfy

$$|P(\lambda_i)| = \left|\sum_{i} \alpha_i \lambda_i^i\right| \le p(|\lambda_i|) \le P(\lambda) = P(\rho(A)), \tag{17}$$

with equality for $\lambda_i = \lambda$. Therefore

$$\rho(P(A)) = P(\rho(A)). \tag{18}$$

By the spectrality of A, by (17), and since in general $\rho(\cdot) \leq r(\cdot)$, we finally

obtain

$$P_i(r(A)) = \sum_j \alpha_j r^j(A) = \sum_j \alpha_j \rho^j(A) = P(\rho(A)) = \rho(P(A)) \le r(P(A)).$$
(19)

The inequalities (16) and (19) complete the proof.

We are able now to generalize the characterization of spectral matrices given in Theorem 3 of [1], in the case of positive matrices.

THEOREM 4. Let A be a positive matrix with minimal polynomial of degree p, and let

$$P_m(z) = \sum_{j=0}^m \alpha_j z^j \tag{20}$$

be any polynomial of degree $m \ge p$ with non-negative coefficients. Then A is spectral if and only if

$$P_m(r(A)) = r(P_m(A)). \tag{21}$$

Proof. If A is spectral, then (21) holds by Theorem 3. Conversely, assume that (21) holds. By the Halmos inequality in (15) we have

$$r(P_{m}(A)) = r\left(\sum_{i} \alpha_{i} A^{i}\right) \leq \sum_{i} \alpha_{i} r(A^{i}) \leq \sum_{i} \alpha_{i} r^{i}(A)$$
$$= P_{m}(r(A)) = r(P_{m}(A)).$$
(22)

Hence, we have equalities in (22) and consequently

$$\sum_{j=0}^{m} \alpha_j [r^j(A) - r(A^j)] = 0.$$
(23)

Each summand in (23) is non-negative, and therefore must vanish. In particular, since $\alpha_m > 0$, we obtain

$$\boldsymbol{r}(A^{\boldsymbol{m}}) = \boldsymbol{r}^{\boldsymbol{m}}(A),\tag{24}$$

where by assumption m > p. By Theorem 3 of [1] this is a necessary and sufficient condition for the spectrality of A, and the theorem follows.

Since the degree p of the minimal polynomial of an $n \times n$ matrix A satisfies $p \leq n$, we have the following immediate consequence of Theorem 4.

MOSHE GOLDBERG, EITAN TADMOR, AND GIDEON ZWAS

COROLLARY 4. Let A be a positive n-square matrix, and let $P_n(z)$ be some polynomial of degree n with non-negative coefficients. Then A is spectral if and only if

$$P_n(r(A)) = r(P_n(A)). \tag{25}$$

REFERENCES

- 1 M. Goldberg, E. Tadmor, and G. Zwas, The numerical radius and spectral matrices, *Linear and Multilinear Algebra* 2 (1975), 317–326.
- 2 P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967.

Received 18 November 1974; revised 13 January 1975